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The possibility of constructing the non-linear equations of the general theory of relativity (GTR) 

incorporating a potential energy concept is demonstrated. Solutions of the generalized equations are 

considered for the motions of individual particles with non-vanishing four-dimensional absolute 

acceleration relative to a family of inertial geodesics, which satisfy the field equations in their orbits. 

Unless the law of universal gravitation is explicitly taken into account, the equations of the GTR and 

the field equations do not constitute closed systems. 

The law of universal gravitation imposes additional restrictions on the gravitational field and the 

trajectories of free particles. The description of the relativistic gravitational fields and the free motion 

of mass particles is based on using both the thermodynamic energy scalar mc2 and the potential energy 

scalar mU of the particles, just as in Newtonian mechanics or in Minkowski space in the special theory 

of relativity (STR). In a comoving frame of reference the scalar V satisfies a three-dimensional Poisson 

equation. 

In the light of the theory proposed here, many well-known solutions of the GTR have to be 

reinterpreted. 

The construction of mathematical models using differential equations generally involves the 
adoption of various simplified “basic” axioms and laws that have been tested in various ways 
for infinitely small volumes in space and time. The latter are defined using suitable canonical 
systems of coordinates in special, ideal, geometrical kinematic objects that enable one to 
characterize the phenomena under study and to introduce various specific motions of a 
mathematical nature. Thus, in order to describe and predict the required answers one has only 
to formulate and solve mathematical problems, as a result of which the essence of the objects 
under consideration and their interactions can be understood, subject to the necessary 
approximations, and the nature of various events described. 

On a theoretical level, the mathematical methods used to investigate the explanations and 
conclusions thus obtained by computational means frequently involve suitable systems of 
coordinates or frames of reference as investigative tools. These frames of reference may vary, 
but it is understood that the discovery of the basic reasons for their implications and the 
specific properties of the phenomena being studied must be invariant in some suitable sense 
dictated by the formulations of the problems and the means used to solve them. 

The use of tensor methods enables one to find results that do not depend on the particular 
forms of the systems of coordinates adopted. 

In definitions and when operating with space-time, material bodies and fields, one must 
work with continuous manifolds of “points” which are individualized by their properties, 
masses, charges, spins and in general many other specific features which come to light when 
they interact. 

tPrik1. h4af. Mekh. Vol. 58, No. 5, pp. 3-21, 1994. 

759 



760 L. I. Sedov 

The individuality of the objects is postulated by stipulating notions about their properties 
and interactions. In particular, this applies to representations of space-time as manifolds of 
individual carriers with geometrically defined continua of points, embedded in which are 
various objects with their own individual points. It is taken for granted that such individuals- 
which may or may not be the same as the individuals of the spaces and time being used- 
interact. 

In traditional physical applications, however, one uses four-dimensional physically defined 
spaces. In such spaces one attaches prime importance to space-time frames of reference, in 
which the arithmetization coordinates of individual points are produced by naming three 
constant values of the numbers tl, {*, t3, and proper time t. In a fixed space one can consider 
various objects, and along with the coordinates (\I, k*, c3, 7) one can similarly introduce 
further objects with coordinates r)‘(q”, T’), (a = 1, 2, 3). Thus, one can refer to comoving 
systems of coordinates for an observer $($, n2, r13, 7’) and for the substances being studied, 
which are defined by the coordinates 5” and z, and speak of motion in one and the same space 
relative to an observer defined by the function $(t”)(i, k = 1,2,3,4). 

In various physical theories, numerical characteristics of “point-objects,” designated by 
constant values 5” = const(a), may be replaced by suitable objects using matrices of numbers 
and other generalized concepts. In particular, 5” may represent such large-scale finite bodies 
as asteroids, planets, stars and even whole galaxies. Not infrequently, such objects are 
modelled by material points with designated values of !I, c’, 5’ and 2. 

There are different ways of defining systems of coordinates in a point continuum. Bearing in 
mind four-dimensional pseudo-Riemannian spaces with metrics having signature - - - +, 
families L of global time coordinates t, corresponding to + values in the metric, may also be 
taken to correspond to coordinates lines L, where the latter were chosen fairly arbitrarily for 
the variable z with 5” = const at the initial stage, in the construction of the theory-subject 
nevertheless to the restriction that they are not closed and, because of the uniqueness cond- 
ition, do not intersect. In the final phase of investigation, one has to set conditions to define the 
possible families of such lines for Riemannian spaces. Clearly, when working in specific 
relativistic theories, one must put forward additional conditions, which should define systems 
of families of coordinate lines L representing the influence of certain characteristic quantities. 
The latter may arise and will generally figure in the axiomatic model relationships prescribed 
by the specific features of the local inertial tetrad reference systems being used. 

It should be noted that in formulations of gravitational theory, which is devoted to the free, 
collisionless motion of material particles, one considers the mutual interaction of particles via 
mass forces, without any surface forces. The latter are characteristic, for example, in the theory 
of elasticity and plasticity, the theory of viscous fluids and many other (model) material and 
field continuous media. 

Without loss of generality, the metric for individual particles, which are defined by constant 
values of \I, c*, 5’ and the variable z, may be transformed globally (11 to canonical form 

ds2 = g”,(zI, z 2, z3, z4)dzidzJ, i,j= 1,2,3,4 

(1) 
ds2 = c2dz2 + 2ga4@, z)dkadt + g&Y, z)djad\p 

where a, p = 1, 2, 3 and the summation convention for equal indices is assumed. Here ds is the 
invariant distance between any suitably chosen infinitesimally close points in the space. 

After any particular transformation we have zk = zk(kl, c*, t3, T), and c is a constant scalar 
characteristic of the pseudo-Riemannian space. 

In this form of the metric, the family of L consists of coordinate lines of the variable 2 on 
which ds* = c2dT2 for individual points, the latter being designated by quantities 4” = const(a). 

In comoving Lagrange coordinates for a fixed Riemannian space with metric (l), all the 
mechanical characteristics of the state of individuals may be treated as particles embedded into 
the space. The state of a continuous medium is defined by functions of the components of the 
metric tensor g,, = c* = const, gU4(cu, z) and g,,(y, z) and by the choice of local inertial tetrads 
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S. We note here that, in order to compute kinematic mechanical characteristics for the absolute 
velocity and acceleration vectors, of components of strain tensors, and of strain rates in fixed 
Riemannian spaces, one has to introduce a set of locally possible defined inertial tetrads S at 
each point. 

On the basis of the form of the metric and the family L, one defines the concepts of absolute 
four-dimensional velocity ~(5’) and absolute acceleration a({‘) by the formulae 

u = dsldz, a = duldz (2) 

In the coordinate system c”, 2, the components of the four-dimensional velocity u satisfy the 
formulae U’ = u* = u2 = 0 and u4 = c, while covariant components of these vectors in the metric 
(1) may be defined by u, = cg,uk = cg,, and u, = c, so that u’u, = c2. 

On the basis of these formulae, the absolute acceleration of individual material points, like 
the acceleration relative to local inertial tetrads, may be written as 

It is well known from practice in the construction of geometrical pseudo-Riemannian 
models of space and time that, as when modelling various media and fields, one can-and 
indeed must-introduce different models of four-dimensional spaces for pseudo-Riemannian 
spaces. In that connection great success has been achieved in applications and in further 
refinement of the concepts of space and time. 

The model of Newtonian mechanics in which the geometrically defined coordinates form a 
three-dimensional part of Euclidean space, while the fourth (time) variable is 2, which is 
measured by synchronized clocks, is absolutely independent of any objects and events. 

Further complication of the concept of space as a physical object involves a far-reaching 
extension, by introducing the four-dimensional metric (1) of pseudo-Riemannian spaces; in 
such spaces, by definition, choosing a suitable system of coordinates sta, z in an infinitesimal 
elementary volume, depending on the point M under consideration, one can express the 
metric, apart from higher-order quantities, as 

ds2 = &+ _ &’ 2 _ &z2 _ &32 

For the corresponding element of the coordinate tetrad S with relative increments dx’, dx2, 
dx*, dx4 = dq for which, by definition, the Christoffel symbols vanish (rh = 0), the tetrad S for 
the variables x” and 2 at the point M forms a local inertial frame of reference. 

As is well known, if L* is any curve in a Riemannian space, then, by a suitable trans- 
formation of coordinates to certain variables which depend on the form of L*, one can intro- 
duce variables ,t? and 2 in such a way that the Riemannian space metric will be expressed as 
(4) in an infinitesimal neighbourhood of L* not only at an isolated point of space M but at all 
points of L *. 

Such a system of coordinates attached to L * is called a Fermi frame of reference; it is inertial 
on L*. In the general case, one cannot transform the metric to the form (4) for points of finite 
volumes or finite areas of three- and two-dimensional surfaces. If the metric of a Riemannian 
space can nevertheless always be reduced to the form (4) simultaneously at all points of the 
space, this special case is called Minkowski space, which is similar to Newtonian space with a 
suitable three-dimensional Cartesian system of coordinates. 

In the general case, the components of the metric tensors g, for the tensors of pseudo- 
Riemannian spaces depend on the absolute time z, and therefore, as will be shown below, it is 
impossible to introduce global inertial systems. This is true, in particular, for metrics corres- 
ponding to Weyl spaces, which differ from Minkowski space and have Ricci tensor R,. = 0, 
while their Riemann tensor coefficients satisfy the equalities %,, = vjkl, i.e. they are equal to 
the components of the Weyl tensor. 
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Basis tetrads S may always be introduced at different points of Riemannian spaces for 
appropriate local metrics (4) allowing for Lorentz transformations; and this may be done in a 
universal way by using the local systems of inertial Cartesian systems of coordinates na, z in 
the three-dimensional Euclidean spaces of Newtonian mechanics or in Minkowski spaces with 
different global metric forms (1) in the variables .P, z, provided these forms correspond to 
metrics of topologically equivalent Riemannian spaces. The tetrads S are holonomic in Euclid- 
ean and Minkowski spaces, non-holonomic in Riemannian spaces of the most general form. 

Since global inertial systems of coordinates cannot exist in Riemannian spaces, it follows 
that, corresponding to the inertial local tetrads S in Cartesian coordinates in Minkowski spaces 
and in the corresponding systems of coordinates (2, 2) in Riemannian spaces, in variables xa 
and z we will have non-holonomic inertial tetrads as frames of reference. Such a frame 
of reference may be considered as an immediate, natural extension of the global inertial 
frame of reference in Minkowski spaces. The tetrads with P and z will be the inertial frames 
of reference selected in order to introduce and locally define characteristic quantities when one 
is formulating fundamental postulates-axiom systems in small objects. The introduction of 
model invariant relationships in Minkowski tangent spaces may provide the basis for a global 
definition of this kind of relationship in Riemannian spaces, agreeing with those properties of 
the spaces that are defined in the small; this is the essence of pseudo-Riemannian spaces. 

On the other hand, for any fixed system of coordinate lines of families L for the variable z, 
any determination of the four-dimensional velocity and absolute velocity vectors yields results 
which, irrespective of whether the tetrads are non-holonomic, are invariant with respect to the 
different local inertial tetrads S. To compute them, therefore, one can use any local inertial 
tetrads S, holonomic or not. However, if one is determining, say, the components of strain-rate 
tensors and many other characteristic values at the points of the system L, the results will 
depend on the choice of a system of non-holonomic local tetrads S. 

In the mechanics of continuous media, non-holonomic inertial frames of reference S may be 
singled out in a Riemannian space with the aid of Cartesian systems of tetrads S in the fixed 
tangent Minkowski spaces at all points of the time coordinate lines L, as comoving frames of 
reference in Riemannian spaces. 

In addition, it is obvious that if the pseudo-Riemannian space is fixed, the components of the 
metric in canonical form (1) in the comoving system of coordinates may be changed by 
specifying a family of coordinate lines for the variable z and applying transformations 

that preserve the form of the metric (1). 
On given lines L, obviously, the absolute four-dimensional velocities and accelerations are 

independent of the form of the inertial tetrads of the reference system. However, such 
characteristics of single points as the strain tensor and strain-rate for small three-dimensional 
volumes dV,, normal to the lines L depend on the frame of reference of local non-holonomic 
inertial tetrads S applicable to each point of the lines L, since these tetrads are moving at 
constant three-dimensional velocities Vrp, along L . In any fixed four-dimensional Riemannian 
space, in suitable coordinates, proper choice of tetrads S and application of transformations (5) 
will make it possible to introduce simplified versions of the values of the metric tensors, for 
which the three-dimensional strain-rate tensors vanish. 

Indeed, let 3,, 3?, 3, and 3, be basis vectors depending on time ‘5, at the points under 
consideration on the z-coordinate lines of the comoving frame of reference, and suppose that 
at the points on the lines L we have constant basis vectors e,, e2, e3 e4 (independent of 2) for a 
local inertial tetrad S; assume that 34 (2) and e, at the points in question are directed along the 
corresponding tangent to a line of L. 

If the inertial tetrads S at all points of the space are chosen in a non-holonomic way locally so 
that 3,=e,, then the set of inertial tetrads may be considered as a frame of reference. At the 
same time, we can write 
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gap = (3a3f3) = (eaep), ga4 = t3a34) = (e&4) (6) 

Formulae (6) define the same components of the metric tensors, but with possibly different 
frames of reference-this may, however, affect their derivatives with respect to global time 2. 

Obviously, ag,, /& = 0 relative to the tetrad frame of reference as described, with bases e,, 
and so 

(7) 

Therefore the strain-rate tensor, which is defined in terms of gM, will vanish; this is quite 
satisfactory for motion along L in the theory of the free motion of material points, dust 
particles or even finite bodies which are absolutely rigid in gravitational theory. 

On the basis of (2) and (3) the derivatives c&g,,/& are the components of the acceleration 
relative to the tetrad frame of reference. 

The previous definitions and terms have a purely kinematical nature in four-dimensional 
pseudo-Riemannian spaces. 

To explain the applications of these theories to the GTR, let us write down the fundamental 
equations in a somewhat unusual but explicit form in CGS units 

Ru - g;p/2 = 2.07 X 104’Tij (8) 

This implies 

viq = 0 

which hold in any system of coordinates, in particular, for comoving systems with a metric in 
the form (1). 

Equation (8) is obtained by inserting the value of the coefficient 

k = 87cG /cJ = 2.07 x 10”’ s2 /(g cm) (9) 

as the gravitational constant in the GTR, expressed in terms of the scalar characteristic of the 
spaces, c and Newton’s gravitational constant G. 

The components q, correspond to the “energy-momentum tensor”, which is needed to 
formulate additional postulates to substantiate various model media and fields, and which, for 
the case of pure gravitation in the GTR for free motion of masses, is postulated by the 
equation qj = ~zL,u,. Hence 

Tj = puiui = pc2 (10) 

where p is the rest mass density of the particles of the medium. 
It is obvious that when constructing physical models (which, by nature, are always 

approximate) one must pay attention to the very small value of the coefficient k and the 
comparatively small value of the right-hand side, when, according to (lo), I ii I = c, the density p 
may possibly be extremely large inside stars (in reality, with finite values); nevertheless, the 
right-hand side is still an admissibly negligible small number. 

Successful applications of GTR in astronomy have been achieved, nonetheless, because of 
the well-founded assumption that, instead of realistically modelling bodies with moderately 
large densities p of distributed moving masses, celestial bodies are treated as singular material 
points with colossal masses. In products involving super-small values of the coefficient k, these 
masses may produce admissible types of singular points for the right-hand side of Eqs (8), 
enabling one to work with complicated Riemannian spaces “containing singular points”. In 
practical problems of mechanics, the invariant quantities g,,T” = 5’1’ usually have very modest 
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values, and therefore the right-hand side of (8) may prove to be beyond the limits of the 
modelling accuracy. 

Thus, in many problems, it proves possible to omit the right-hand side of Eq. (2) in many 
regions of space, as a quantity outside the range of the possible or necessary accuracy of a 
useful theory. Nevertheless, mathematically or physically speaking, one can consider Riemann- 
ian spaces for which it is true that R,j - g,,RI 2 = 0, and this implies that the Ricci tensor vanishes 

Rij= 0 (11) 

and may be of interest not only for purely scientific research, but also from practical points of 
view in theoretical applications of physics. 

In particular, physics has long been based on the STR, and developed on that basis, using 
Minkowski space, which is a particular solution of Eqs (11). (The author has at his disposal a 
construction of the class of all solutions of Eqs (ll), which is tremendous.) 

Special consideration will now be given to the possibility of introducing global inertial 
frames of reference in Riemannian spaces in the case of canonical metrics of type (1). 

By definition, inertial systems in small volumes are characterized by all the specific prop- 
erties of Cartesian coordinates in pseudo-Euclidean spaces, for which the coordinate lines L 
are straight lines or geodesics in Riemannian space, non-intersecting adjacent lines in the small 
being parallel up to infinitesimals of more than the first order. This means that, up to infinites- 
imals of the first order, the normal distances between adjacent fixed coordinate lines are the 
same. 

It should also be recalled that diverging or converging systems of straight lines (geodesics) 
in the small cannot serve as global coordinate lines in inertial frames of reference. In other 
words, if we let ei (i = 1, 2,3,4) denote the coordinate vectors of bases for inertial tetrads, these 
vectors are approximately constant near the point in question. 

After letting u and a denote the velocity and acceleration along all the coordinate lines L in 
inertial systems in the GTR in local tetrads 

eiUi = drld~i = const, a = 0 

In four-dimensional Riemannian spaces in local inertial tetrads, the following relationships 
must hold exactly for the vectors u and for bases e, and e’, respectively, in any frames of 
reference (systems of coordinates) 

Vi& = 0 for any k, i = 1, 2, 3,4 (12) 

These relationships constitute a mathematical definition of inertial tetrads. 
In Eq. (12), u is the basis vector corresponding to the time coordinate z in the comoving 

metric (1). For inertial tetrads, however, the same Eq. (12) will hold by definition for each of 
the basis vectors e4 = u. 

The invariant equation (12) may be applied in any system of coordinates. 
The system of bases e,, e,, e,, e4 = u is not necessarily orthogonal! 
At the same time, Eq. (12) is invariant under any transformations 16; = I;zL~, where 1; are 

constant coefficients; this is true, in particular, for the transformation from covariant vectors eP 
to contravariant vectors ep. 

Equation (12) may be rewritten in any system of coordinates, including a comoving system, 
as 

It follows from (12) and (13) that 

(13) 
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and, therefore, in global comoving inertial frames of reference one obtains 

agq4 ag4i -0 and J=o, i,q=I,2,3,4 ak5 -_-- 
ay agq a7 

(14 

By (14), the Riemannian metric in the comoving system reduces to a synchronous form 

ds2 =c2dz2 +g,p(~Y)d{ad$ =c2dr2 -[i,,O~~)lfil~~ +i2201y)422 + 

+i3j($)h122~9 Y = ~3 (15) 

Therefore, the world lines L are parallel geodesics and normal to a three-dimensional 
Riemannian surface C moving along the lines L at a constant four-dimensional translational 
velocity u, which is the same at all points of the lines L. 

If it is true, apart from the inertial property in Riemannian space (the case of empty 
volumes), that the corresponding components of the Ricci tensor vanish (Z?,, =O), then the 
three-dimensional space C is Euclidean and the metrics (6) define Minkowski space. 

In the general case the components of the metric tensors g,-the tensors of pseudo- 
Riemannian spaces for arbitrary comoving families of lines L-may depend essentially on the 
absolute time z. It is therefore impossible to introduce global inertial systems. In particular, it 
will be shown below that for metrics of Weyl space, which differ from Minkowski space in 
which also R, = 0, no global inertial system of coordinates can exist. Hence conditions (14) 
cannot hold globally in finite volumes. 

Thus, in Riemannian spaces, one cannot generally have finite 
inertial system. 

volumes V, with a global 

At every point of the space, locally applicable inertial tetrads for calculating the acceleration 
on a given world line, as a comoving system, are determined not uniquely but only up to a 
Lorentz transformation. Since the absolute acceleration vectors at points of world lines L in 
tetrads related to one another by a Lorentz transformation are the same, we may assume that 
the tetrads are the same at different points of L and on different L'. Hence one can use a 
locally identical unique fixed inertial tetrad at all points of Riemannian space. 

There is a one-to-one correspondence between different topologically equivalent Riemann- 
ian spaces under which the same coordinate values correspond to different metrics. In 
particular, Cartesian coordinates and comoving inertial tetrads can be introduced by using 
Minkowski spaces and suitable inertial tetrads, which are also preserved in pseudo- 
Riemannian spaces but form a non-holonomic frame of reference in a Riemannian space. 

Every finite relation between tensor components, as expressed in each tetrad, maintains its 
tensor form in the transformed components after suitable transformations of the systems of 
coordinates, both in Minkowski space and in Riemannian space. 

This situation is the basis for convenient definitions of suitable tetrad systems in finite 
volumes, obtained through transformations for a fixed global metric. 

As regards the inverse problem-to determine global metrics and the corresponding finite 
tensor relations in global coordinates on the basis of tetrad data-this requires the satisfaction 
of continuity conditions of a fairly general kind, taking into account that any fourth-rank 
tensor with suitable symmetry, in any coordinates-global or inertial local tetrad-may be 
considered as a Riemann tensor if its components satisfy the Bianchi identities only locally in 
the tetrads. 

In fixed spaces with coordinates x’, the transformations may be used to define the laws of 
motion of individual geometrical points or of individual physically defined points of 
continuous media or fields, for which the coordinates may or may not coincide with definite 
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individual geometrical points of four-dimensional spaces. If one admits the application of a 
suitable collection of non-holonomic local inertial tetrads as frames of reference in Fermi 
variables P and T, one can ensure satisfaction of the equality 

3g,e/&=O for cx,B=l,2,3 (16) 

in comoving coordinates in four-dimensional pseudo-Riemannian spaces at every point and on 
every coordinate line L, where T is an invariantly defined proper time. 

If the right-hand sides of Eqs (9) are obtained by varying invariant energy expressions for a 
space of distributed masses, one can write at every point 

k 
r 

1 
p&#Alj + p 

dU(x”, 7) 

dz 1 dV,dT = kT;‘dV,dz = drn(gp’dxj + dU) (17) 

where dV,d~=dV,, with dV,, dz and dV4 considered as invariant quantities. Then one obtains 
the same fundamental equation of field theory for the geometry of the Riemannian space, 
irrespective of the presence or absence of a specific potential energy U(_P, 2) (the equation is 
obtained by varying the energy equation with respect to g,,). This equation, as is well known, 
occurs in the GTR as a condition for determining the geometrical properties of pseudo- 
Riemannian spaces as sets of points of a stock of mechanical objects and events associated with 
them. 

By (17) the equations of field theory in any global or local tetrad frames of reference may be 
written in the form 

R,’ - $!R = kpu;,j (18) 

(The details of a dynamical relativistic theory of gravitation were presented by the author in a 
previous publication [2].) 

Tensor contraction relative to i, i in Eqs (18), in any system of coordinates, yields the 
invariant formula 

-R = kpc2 (19) 

Next, covariant differentiation of Eqs (18) in any comoving coordinates yields 

uiu,(pd) + pUh$4i = 0 or UiU,(pd) + pCU4U; = 0 

In a comoving system of coordinates the quantities LT),U, are equal to the component ni of the 
absolute acceleration 

a, = cag,4/af P-3 

on any individual comoving line L . Moreover, the acceleration projects onto the tangent to the 
trajectory in question as zero, because the absolute value of the velocity is constant: I ii I = c. 

In the general case, for an arbitrary comoving line, it is not necessary that a three-dimension- 
al individual physical particle should have constant mass, i.e. 

Vipui # 0 and ai = V4Ui *O (21) 

The law of conservation of mass for a particle on a line L implies the equation of continuity 
Vjpr~’ = 0, and therefore a, = 0 and 
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The theory of gravitation is constructed with due attention to two independent axioms, 
which represent empirical laws: the law of conservation of mass for individual particles, and 
the law of universal gravitation. These laws are established separately and independently of 

Eqs (9). 
The potential energy U, as a function of the points of space, is the same for different 

comoving families in fixed spaces and, generally speaking, is determined using universal scalar 
differential equations in any fixed systems of coordinates; these equations do not depend on 
the metric of the Riemannian space in question. 

The formulation of each of these laws consists of empirically justified model postulates; 
these naturally admit of different formulations of the characteristic magnitudes of the masses 
involved, also including various empirical constants. The formulae obtained may differ, 
depending on the desired modelling accuracy. 

At points of vacuous volumes, where Tj = 0 or p = 0, it is true that R = 0 and R, = 0, but the 
components of the Riemann tensor are generally non-zero and equal to the components of the 
Weyl tensor W, whose components are yPjq = RipLq f 0, contraction giving W; ,‘1 = W jp = 0. The 
algebraic properties of the components of the Weyl tensor were analysed by A. Z. hetrov, and 
their global functional properties have been established by the present author [3]. 

In a general setting the Weyl tensor corresponds to curved pseudo-Riemannian spaces 
depending on four scalar invariants. 

By definition, Minkowski space and the STR are based on the simplest special case of the 
Weyl tensor, that is, zero. 

Let us consider the solutions of the field equation (18) when the components of the metric 
in the canonical comoving coordinates depend only on the coordinates cl, k2, 4’. In the pure 
theory of gravitation in the GTR, for free motion of material points in canonical comoving co- 
ordinates, one deduces that in pseudo-Riemannian spaces the functions g,, are independent of 
2: g,,(tr) #O, which is a corollary of the general equations (9) when the energy-momentum 
tensor is defined by formula (17) with U = const at all points of the space. 

The form of the function g,&‘) is determined by the choice of non-holonomic local inertial 
tetrad reference systems, which must always be used according to the postulates of a pseudo- 
Riemannian space, since in pseudo-Riemannian spaces a global holonomic inertial system of 
coordinates exists only in Minkowski space, for which Eqs (9) are not satisfied in the GTR 
when p#O. 

The functions g,&{‘) may be considered, via a transformation of the type 5” = cp”(~~‘) as the 
tensor metric of a moving fixed three-dimensional definite Riemannian space P, independently 
,of the global time coordinate r, which is responsible for its arbitrary motion in four- 
dimensional space as an absolutely rigid body. 

The functions gu4(cY) ensure the absence of absolute accelerations for four-dimensional 
velocities u on the global time T-coordinate lines. Therefore, in a comoving metric for Eqs (18) 
with g,,(~y), the motion of the three-dimensional space P must be translational and inertial in 
a four-dimensional space, which is in general curved if R $0 or also three-dimensionally 
curved if R = 0 and R, = 0. However, for a three-dimensional metric g&4’) one concludes that 
RM f 0 when the Riemann tensor is equal to the Weyl tensor. 

We know that, if Rap = 0, in P then the three-dimensional space P will be Euclidean, and the 
four-dimensional space will then be Minkowski space. 

At the same time, one can consider Weyl and Minkowski spaces with moving accelerations 
of rigid three-dimensional spaces with curved spaces P, but in that case the absolute accelera- 
tions of individual material points must be non-zero and it is therefore necessary that g,,(tr, 
z) f 0, which is inconsistent with the classical field equation (18) in GTR. 

The dependence of gu4 on 5’ is stipulated as a direct and quite natural extension of the 
Newtonian theory of gravitation for relativity theory, when the absolute acceleration is zero. 

In Weyl spaces g,,4({‘, z) and a may be non-zero. This is true, in particular, in comoving 
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frames of reference in Minkowski spaces in the STR, when the potential energy is such that 
U.&n f 0 for various values of U = const on different coordinate time lines L for a curvilinear 
global variable z. 

The above constructive analysis of solutions of the field equations (18) in comoving 
coordinates enables us to characterize Riemannian and Weyl spaces, which must satisfy the 
classical field equation. The construction may provide a basis for understanding why it is 
necessary to introduce a potential energy which depends on the mass distribution of matter. It 
is nevertheless admissible from a mathematical standpoint, in conformity with the GTR, to 
construct a model theory of gravitation without taking the potential energy of masses into 
account, bearing in mind that Ue c*. However, even for very small absolute accelerations, the 
global geometrical and temporal properties of orbits determine different orbits of individual 
points when U f 0 or, when U = const (L) # 0, for large time intervals. 

For a rigorous and natural account of the transition to Newtonian theory as a limiting case of 
the GTR, complicated by conceiving of the physical nature of space in terms of pseudo- 
Riemannian spaces, one should construct a theory of gravitation taking the potential energy 
into account, which is of fundamental importance in Newtonian theory. This should be done 
within the framework of Eqs (9) for the “energy-momentum tensor”, which is defined by (17) 
with the addition of physically very essential scalar laws for the function U, representing the 
law of universal gravitation. The advantages of such a theory are obvious in practice in many 
situations in which accelerations are generated by an interaction in the presence of large 
concentrated masses, e.g. in connection with the purported reality of the theoretical 
phenomena associated with “black holes”, which are characterized by a singular structure of 
space geometry and also be very high accelerations of individual material particles; and there 
are many other examples. 

What can be said, according to Newton, about the energy of a glass with stationary water in 
Lake Sevan, or about the energy measured by a cosmonaut in an orbital station, or in a 
Yerevan laboratory, in comoving coordinates or in global inertial systems of coordinates? The 
answer given in the GTR is: these energies-for water (or a light snowflake)-are the same in 
both cases, each equal to mc’. In Newtonian mechanics, however, and in the alternative (17) 
theory of relativity, one says that these energies are different, because of the presence of 
potential energies. Practical engineers, exploiting these differences, build electric power 
stations. 

According to the aforesaid, in gravitational theory one can separate the question of defining 
a global space associated with the equations of field theory from the definitions of spaces and 
solutions of physical problems involving the motion of individual particles. 

In Newtonian mechanics and alternative theories it is useful to use stationary fixed spaces in 
which different gravitational fields and laws of motion for mechanical systems can be 
constructed as exact solutions in the proposed models. Such a formulation of the problem may 
always be used in Newtonian mechanics and the STR. 

In defining the spaces one can bear in mind the following model definitions. 
1. In Newtonian mechanics, three-dimensional spaces are Euclidean, and time is absolute for 

all possible problems of mechanics. 
2. In the special theory of relativity, everything is the same as in Newtonian theory, but only 

in comoving coordinate systems. For given observers, further processing, by inertial 
navigation algorithms, is necessary. 

As follows from the aforesaid, for arbitrary L or L* the problem is that, unless suitable 
restrictions are imposed or additional conditions placed on the family of lines L, the 
fundamental three-dimensional equations (9) in the GTR admit of a large variety of exact 
model solutions of Eqs (8), which cannot serve as satisfactory models to describe the nature of 
gravitational fields. 

In view of the nature of Eqs (8), particular solutions cannot be determined unless additional 
conditions are imposed. In the GTR these additional conditions amount to the requirement 
that the lines L be geodesics. 
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In Newtonian mechanics, the additional conditions comprise the validity of the well- 
corroborated experimental model law of universal gravitation for distributed masses of 
material bodies. These masses m, in turn, are defined (by empirical postulates) as characteristic 
parameters of bodies and are of fundamental value in all applications of mechanics to theories 
of the motion of material bodies. 

In the GTR, many authors assume that the law of universal gravitation is automatically 
satisfied in weak gravitational fields. In gravitational theory, however, if the geodesicity 
condition is or is not satisfied for certain systems of comoving families L, then the same will 
hold after coordinate transformations for any other comoving families L’ and the time variable 
2’. 

In Pauli’s Relativitiitstheorie, first published in 1921, which had a tremendous influence on the ideology 
of many authors of later scientific papers and textbooks on the GTR, one finds the following fundamental 
assumptions (see [lo, pp. 203 and 2191). 

In weak gravitational fields, the components of the metric tensor must deviate only slightly from the 

values corresponding at each point of space to a local inertial metric. Otherwise, basing himself on this 
assumption, Pauli proceeds from the metric that he postulates for Riemannian space 

ds2 =c2 I+ 2m(x~;2’x3’)dt2 +g,p(~1,x2,x3))dxadx~ 
i 

Pauli took a small function 0(x’, x2, x3) independent of the variable t, which is not satisfactory at all 
because of the meaning later given by Pauli himself to that function. 

As additional conditions (which are always necessary), historically speaking, a particular, special metric 
of the form (23) was proposed as a satisfactory metric for the GTR; but this is inherently inadmissible if 
one is trying to verify the validity of the theory for weak fields, whenever the solutions of Eqs (9) of the 
GTR approach Newtonian theory. 

One should immediately stress that any additional conditions in fact impose restrictions on 
the system of non-unique solutions of the fundamental equations (9) in the GTR, while the 
postulated forms of the metrics in question may not be solutions of the relevant problems at 
all, or they may fail to correspond to reality from a physical point of view. 

We are going to prove that any solutions describing the free motion of particles of constant 
mass in spaces with metric (23) in comoving coordinates admit of absolute accelerations; but 
by the field equations (18) with Tj = kp~+~ this contradicts the main conclusion of the GTR, 
that the time orbits in material four-dimensional spaces are geodesics. 

However-and this is true in particular for the Schwarzschild metric in the GTR, which 
differs from (23) and is also defined on the basis of a series of limited conditions-one can 
ensure the validity of the equations of the GTR and the geodesicity of the motion of the test 
particles. In that case one concludes, further, that the individual test particles move along 
geodesics, without interacting with adjacent particles, with constant energy values mc2 in each 
orbit in a space whose Gaussian curvature is zero, R = 0, in vacuous regions. 

Explicit definitions of individual points and invariantly defined proper time are necessary if 
one wishes to apply the concepts of absolute four-dimensional vectors of velocity and accelera- 
tion. To that end, besides the coordinates (x’, x*, x3, r) in (23), one introduces comoving 
Lagrange coordinates k’#, c”, c3, ) z via the following transformations 

The metric (23) is reduced by the transformation (24) in the same space to the form 

ds* = c2dz2 + 2&.&, z)dSadz + jQe (ty, z)d~ad~p (25) 
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After each transformation in the variables (24), we obtain a canonical comoving metric, rela- 
tive to which the law of motion in Lagrangian coordinates (24) involves a global proper time 
z #t, e.g. one has “initial” data 5” = const on the trajectories of individual particles. We note, 
in addition, that metrics (25) may represent different laws of motion, depending on the choice 
of the functions xa(cy, r), or, equivalently different definitions of transformations (24), fixed 
by removing the arbitrary specification of the functions x”({~, 2) from the indicated arguments 
in formulae (25). 

For series of special transformations, we set 

where b is any possible finite scalar constant. Based on formulae (23) and (26), one can write 
down the components of the metric in (25). This yields the approximations 

(27) 

Using the formula Ok = tag,, /3r one sees that the components of the acceleration of individual 
particles on lines L corresponding to values 5” = const are defined by the formula 

a =_C_?!E 
a 

b axa 

According to (28), the components of the absolute acceleration vector a may be different, 
but it is essential that a z 0. 

This conclusion has been deduced for a special transformation (26); but the metric in 
another comoving frame of reference, corresponding to a general transformation, is derived 
from (25) by applying after (26) an additional transformation, preserving the form of the 
canonical comoving metric (25). It is easily shown that any such transformation is given by the 
formulae 

Transforming the metric (25) in this way, we obtain 

ia =c 2 E!E+& P 

atf a+ 
~-I+(-,)0 aq (29) 

Since &Y/&la is independent of z, it follows that in other comoving coordinates TJ”, 2’ one 
has the following formula for the non-zero acceleration 

(30) 

The components a, differ from a, only through the transformation from {“, T to $, 2; hence 
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the absolute acceleration vector is an invariant. 
Since L is an arbitrary comoving line for the free motion of a particle of constant mass, it 

follows from (22) in the GTR, with potential energy U = const at all points of space, that the 
time acceleration a is necessarily non-zero in any comoving coordinates of the metric (23), and 
therefore it does not satisfy the fundamental condition of the GTR and is not a solution of any 
problem involving the free motion of material media in the GTR. 

It is clear from (27) that the components g,,(x”, 2) do not affect the magnitude of the 
acceleration a and therefore the metric (23) cannot be chosen so that a = 0; but one can choose 
g,, so that Poisson’s equation is only approximately satisfied, on the basis of the approximate 
equality (19) for the metric (23) 

R = -kpc2 

and after introducing the constant relativistic gravitational coefficient k of formula (9). In view 
of the very small values of k, the accuracy in the values of the coefficient obtained through 
what are actually “false” solutions in the GTR is doubtful, but it is quite satisfactory when 
allowance is made for the potential energy, which is the source of the observed accelerations. 

Thus, the metric (23) is not consistent with the GTR, in which T,i = dmc’ and a = 0. If one 
assumes that T’ =dmc’+dmU, then instead of the equality a, = 0 one obtains a, =-XJlaxa 
and U=@. 

We add here that the quantity k does not influence the solutions of the equations of the GTR 
in vacuous volumes for Weyl spaces, which are defined by the equality ?I, = 0, when, however, 
the density is infinite, p=m, only at isolated points of space where the mass m is finite (the 
model of a star). 

In Newtonian field theory and alternative relativistic theory with potential energy, when 
equality (17) holds in the comoving frame of reference and the scalar Poisson’s equation is 
introduced independently of the system of equations (8), in which it follows from the law of 
universal gravitation that 

VaVaU=-4xpG (31) 

the constant k will be replaced in solutions by the gravitational constant G as derived from 
Eq. (31) and not from the canonical equations (9) in the GTR, since in a vacuum T, = 0. 
However, even in an approximate formulation one cannot ignore the non-vanishing accel- 
eration a of (28), since if one puts a = 0, so that, by (28), 0 = const, then the metric (23) will 
define Minkowski space, in which all geodesics are straight lines, in glaring contradiction to the 
main corollaries of physical gravitational theory. 

Nevertheless, in short time intervals, one can take z = t after suitable approximations; in that 
case the planets move relative to the Sun with small accelerations and therefore, in practice, the 
terrestrial frame of reference may often be treated as inertial in many problems (but as a rule 
taking into account the accelerations of forces of gravity generated by the Earth); in addition, 
of course, no allowance need be made for the alteration of day and night! 

At the same time, Pauli took it for granted that the law of universal gravitation and various refinements 

thereof were valid in the GTR, and accordingly stated Poisson’s equation followed from the equations of 
the GTR for very weak fields. However, the metric (23), which he proposed on intuitive grounds, is an 
additional strong assumption, which explicitly contradicts the required geodesic property of orbits in the 
GTR even for weak fields. 

Similar assertions may be found in a large number of scientific publications and textbooks on the GTR. 
In particular, it is claimed that in celestial mechanics the GTR yields the next amendment to Newtonian 

theory in general, including the case of long time intervals, though this has not really been proved. 
Thus, the previous and subsequent considerations contradict Pauli’s conclusion. Here is a quotation 

from Pauli’s text: “Thus, Poisson’s equation indeed turns out to be valid. The fact that the general theory 
of relativity, based on the postulates of $56 without further assumptions, leads to Newton’s law of 
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gravitation is its greatest success. Moreover, as a result we are now in a position to say something about 
the sign and the numerical value of k.” 

In fact, the geodesic property of the family of lines L in the GTR follows precisely from the condition 
that the components g,, be independent of the proper time 2, in other words, only as a result of the form 
of the function u,(tl, c2, 5”) and accordingly in the comoving system of coordinates when ga4(ky). 

The possible freedom in the choice of the family of coordinate lines L and the components g,,(e’) and 
g,(ky, 2) shows that one can construct the gravitational field in more than one way even in vacuous 
regions, where p=O, when there are singular points or boundary conditions for the sets of pseudo- 
Riemannian spaces for some series of families of time lines L with 

This kind of solution is certainly of little use, generally speaking, for models of gravitational fields in 
nature, without taking into account the interaction of masses according to the law of universal gravitation. 

It is nevertheless obvious that explicit influence of the constant k is excluded in the fundamental 
equations for vacuous volumes. 

In alternative theories of relativity and in Newtonian theory one assumes that the specific 
potential energy U satisfies Eq. (31) according to which absolute accelerations do not vanish, 
while in the dynamical theory one proves that 

aabs = - grad V (32) 

In that case the metric (23) is a solution of Eqs (8) with the right-hand sides modified by 
intr~ucing the specific potential energy. The point is that in relativistic alternative theories the 
geodesic orbits of the GTR are replaced by exact solutions with accelerations, just as in 
Newtonian theory, but in pseudo-Riemannian spaces, When that is done the continuity of the 
passage to Newtonian mechanics as a limit is natural and mathematically rigorous. 

If the family of lines L is given, then by (32) one can define a scalar function U in terms of 
the acceleration aabs. It is also obvious that the converse is also true, i.e. the lines L can be 
determined, given U. It is therefore clear that in order to obtain the necessary models for a 
correct description of gravitation in nature, generally speaking, the use of the model law of 
universal gravitation is essential, independently of Eqs (8)! 

The laws of the corresponding motions of individual points in Riemannian spaces are 
generally different, and this is essential for evaluating theories, since it is these laws that 
determine the main properties of orbits of celestial bodies over large time intervals and in 
weak gravitational fields. 

Let us consider Schwarzschild theory for the solutions of Eqs (8). Instead of the metric form 
(23) we now take a Schwarzschild space metric, which is generated by a polar system of space 
coordinates I’, 0, w, c with time coordinate t in Newtonian mechanics, or in the GTR for a 
pse~~do-Riemannian space with a Schwarzschild metric satisfying Eqs (8) in vacuous volumes 
of four-dimensional space. We can also take spaces filled with “small test masses”, when the 
approximate formulation of the mathematical problems involved is such that the influences of 
these masses on the geometry may be disregarded, hence also their influence on the 
Schwarzschild metric, which is defined by one singular material point with a large concentrated 
mass M, and models a stationary three-dimensional metric of four-dimensional pseudo- 
Riemannian space ~ignoring local fields in problems concerning the motion of celestial bodies 
that disturb the surrounding regions of space). 

In the case of the Schwarzschild solution for Eqs (8) in the GTR, it turns out that the 
Gaussian curvature R is zero at all points of four-space except for the singular point. Therefore 
the Riemann tensor becomes equal to the Weyl tensor, corresponding, in particular, to a 
metric expressed in the following form, due to Driest and Weyl 
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(33) 

In this metric the only constant parameter characterizing the space, other than c, is r*. In 
applications r* is extremely small. 

When r* = 0 the metric (33) corresponds to Minkowski space, in which all geodesics are 
straight lines. Hence, considering planetary motion in the GTR, one cannot assume that 
r * / r = 0 globally in approximate solutions. 

It is thus obvious that in the GTR, even for very weak fields, the space depends invariantly 
only on the variable ratio r * /r in the circular and non-circular orbits L under consideration. 
Moreover, in fixed Schwarzschild spaces the quantity r * for the singular point at which r = 0 
depends on the constant numbers M, c and G. The latter essentially exert their influence only 
through the combination 2MG / c2 = r*, which in the GTR is an empirical magnitude depend- 
ing on the specific situation. 

We also note that the small variable quantities r *lr cannot be omitted in orbits L in the 
metric (33), since it is allowance for these small variable ratios that causes the relativistic effects 
frequently treated in the GTR as refinements of Newtonian mechanics. 

Let us consider the system of lines L in variables t, r, 0, y = o,ct with constant values of the 
Lagrange coordinates; assume that the following equalities hold on the system of time-coord- 
inate lines L: r = r. = const, 8 = 8, = const, 0 = w, = const. 

Considering families of concentric circular orbits with different values of r, and w, at 
8 = 8, = rc/2 and w = coot, we can rewrite the metric (33) as 

ds2 = c2 l- -L-air2)dr2 -(1-i)‘dr2 
r* (34) 

Instead of the time coordinate along L, i.e. the variable t, we can introduce a variable z on L 
as a global coordinate for proper time on the lines of L, by applying the following coordinate 
transformation 

(35) 

As a result we obtain a solution of the field equation (9) in “three-dimensional” comoving 
coordinates 

ds2 = c2dz2 + 2g,,dFdz + g,,dF2 (36) 

where 

g14 = & &$ = -2c2(r* / r2 - 2rWi) / 2(1- r* / r - r20g)2 

By the fundamental law of the GTR, the absolute accelerations must vanish in the orbits L 
of freely moving individual mass particles. If the orbits L in Schwarzschild space are defined by 
the condition that the radial coordinate equal a constant, i.e. r = r, = const, then by (36) it is 
necessary and sufficient that 

0.$ = r*/(2ra (37) 
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and then 
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‘5 = t( 1 - 3r*l(2r0)) 

If Eq. (37) fails to hold, then g,, ~0. Therefore the following 

accelerations 

formulae hold for the absolute 

(38) 

where the component n, does not vanish. In that case, considering the metric (34) in Schwarzschild space, 
one obtains the acceleration of the force of gravity with specific potential energy 

which depends on two constants r* and wi and on the constant of integration U, 

2MG R2 
r*=--, mf=_ 

c2 c2 

Thus, formula (38) for the acceleration component a, may be rewritten in the form 

(39) 

However, the conditions a, =0 in the orbits r=const in the GTR are equivalent to the analogous 

equality in Newtonian mechanics 

Cl21 = MGl12 (40) 

which may not be valid in a fixed Schwarzschild space in different orbits r = const, because, first, the 
Newtonian distances 1 of the points in the orbits from the point r = 0 are not equal to the Schwarzschild 
distances, r# 1; second, the angular velocity Q=dcp!dz in the GTR does not equal its Newtonian 
counterpart dqldt, because Z# t as implied by (35). Therefore, if one replaces 1 by r in formula (40), 
considered in Schwarzschild space, the result is not the same as the corresponding Newtonian formula. 
The differences for test particles give rise to mechanical effects in the classical GTR. 

It follows from formula (37) that in orbits r, =const, 0, =const and w, = const on the 
corresponding lines L, the magnitudes of the time periods q and T, of rotation of the planets 
around the Sun are related by 

It follows from (38) that if r, = 3r */2, then T, = 0 and so the corresponding motion of the 
orbit occurs at a three-dimensional velocity equal to the speed of light c. 

For very small r *<r the periods satisfy the following equalities with high accuracy 
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Hence, when equality (37) holds, according to the GTR the test bodies-planets-in 
Schwarzschild space move forward along geodesics, in other words, atis = 0 for their centre of 
mass. 

However, if certain values of the constants r, and o, do not satisfy Eq. (37), then the planets 
will not only move forward at r, = const but also spin, as a result of which & f 0 for their 
centre of mass. Hence the orbits in Schwarzschild space in the GTR for rotating planets will 
not necessarily be geodesics in the theory of the metric (34). 

We shall now consider exact formulae for the periods of rotation of small masses m around 
the Sun, whose mass M is assumed to be large, considering the motion as that of a material 
point describing circular orbits in Newtonian theory. 

By the law of universal gravitation, the planet may describe a circle of radius 1= const under 
the action of the force of attraction F of the Sun, under the assumption that the Sun is 
stationary in the inertial frame of reference (the mass M is large and m small). The Newtonian 
forces of interaction may be written as 

F= 
mMG mu2 
12=--= 1 

and TNew = y = 2~1% (MG)-% 

Similarly, using (34), we obtain the following 
in Schwarzschild space and in Euclidean spaces 

2 r*C2T2 
r =r 

8rc2 ’ 

formulae for the circular orbits of test masses 

l3 = $TGe_ 

By the definition established for Schwarzschild space, it is assumed that 

r* = 2MGlc2 

We can now write 

(41) 

For large r,p is small but essentially non-zero, since 

r=(l-p)l (42) 

The only dimensionless parameter in the circular orbits being considered in the metric (33) 
is the quotient r * /r, which is constant on different circles. 

In the general formulation of the problem of stationary solutions as stated above, Schwarz- 
schild found a family of solutions in the GTR which depend on two geometrical constant 
parameters a = I’ * and p (in Schwarzschild’s notation). For continuous solutions in polar 
coordinates, up to values r = 0 in a vacuum with R, = 0 and R = 0, Schwarzschild established 
the following relationship [l l] 

and found a formula for the metric 

(43) 

where the spherical coordinate element is dQ2 = de’ + sin 8d$ and 
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R = r( 1 + r*z/r3)1/3 * r 

when there is no black hole, which may be considered as if collapsed into the singular point 
r = 0. The passage from the metric (43) to the metric (33), though seemingly quite legitimate, 
nevertheless qualitatively alters the geometrical structure of the pseudo-Riemannian space 
near the singular point. 

If “p” = 0 and a= r*, the metric (43) takes the form of the metric (33) with all the con- 
sequences described above and, in particular, there is a black hole. 

If “p” f 0 and p = f(r*), where f(r*) is some given function, one obtains a series of solutions 
with different black holes. 
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